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SUMMARY

Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize

is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance

from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 pri-

mary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci

associated with the level of these metabolites in four independent tissues. The genome-wide expression

level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic

variants at each locus or transcriptional variance of each gene identified here were estimated to have a

minor effect (4.4–7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being

worthy of future investigation, either with regard to functional characterization or for their utility for genetic

improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less

well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components

and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally

characterizing four genes involved in primary metabolism in maize.
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INTRODUCTION

Maize is a major crop for food, feed and biofuel supply,

and has the highest global grain production of all crops

worldwide (Haley, 2011). Furthermore, it has recently been

designated as a representative model C4 plant (Pick et al.,

2011; Wang et al., 2014). Due to its agricultural and eco-

nomic value, improvement of either the protein or oil con-

tent in maize has been the focus of intensive grain quality

breeding programs.

Recent advances in metabolite profiling technologies as

well as genetic and systems biology-based approaches

have extended the breeding portfolio beyond the tradi-

tional improvement targets of oil and protein to a wide

variety of chemical compounds, including essential amino

acids, vitamins, antioxidants and other metabolites of

physiological and nutritional importance (Wen et al.,

2016a). The concept has arisen of using metabolome-

assisted techniques to bridge the gap between genotype

and complex traits such as yield and biomass production

(Fernie and Schauer, 2009; Fukushima and Kusano, 2013;

Wen et al., 2015; Ca~nas et al., 2017). Owing to these

advances, studies of plant metabolism, such as the com-

parative study of individuals within large populations, have

increased in a manner which is likely to facilitate future

breeding of both high-yielding and nutritionally rich crops

(Keurentjes, 2009; Saito and Matsuda, 2010; Chan et al.,

2011; Wen et al., 2014). However, detailed systematic

investigations of the natural metabolic diversity of maize

and its underlying genetic basis are still required.
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Plant primary metabolism profoundly influences plant

growth, development and reproduction (Schauer et al.,

2006, 2008). Metabolites such as carbohydrates, amino

acids and organic acids accumulate in sink organs (e.g.

seeds, fruits, and tubers) underlying a wide range of crop

quality traits (Alonso-Blanco et al., 2009). Deciphering the

influence of genetics on primary metabolism is thus essen-

tial to strategies focused on metabolic engineering of

chemical composition or biomass production. Most agri-

culturally and economically important traits of maize,

including primary metabolic traits, are determined by mul-

tiple quantitative trait loci (QTLs; Wen et al., 2015, 2016a).

Linkage mapping and genome-wide association study

(GWAS) are commonly used to dissect complex traits and

precisely locate and characterize these functional loci, pav-

ing the way for crop improvement via marker-assisted

selection or biotechnology-aided breeding. Taking advan-

tage of linkage mapping using a recombinant inbred line

(RIL) population, we have previously identified a large

number of QTLs associated with the variation of 79 pri-

mary metabolites which enriched our understanding of the

genetic basis underlying primary metabolic variation in

multiple maize tissues (Wen et al., 2015). GWAS has been

used in plants over the last decade, with screens covering

a large variety of phenotypic traits including large-scale

primary metabolic traits (Riedelsheimer et al., 2012; Wen

et al., 2014; Francisco et al., 2016; Tieman et al., 2017; Xiao

et al., 2017). To complement the information on genetic

determinants of primary metabolic network obtained from

our previous linkage mapping by combining the advan-

tages of association analysis, here we performed gas

chromatography–mass spectrometry-based metabolite

profiling across four tissues [seedling leaf, mature leaf,

young kernel 15 days after pollination (DAP) and mature

kernel] of a maize association panel containing 513 inbred

lines that were genotyped by 1.25 million genome-wide

single nucleotide polymorphisms (SNPs) (Yang et al.,

2010; Liu et al., 2017). We conducted GWAS of 61 primary

metabolites using this association panel. We also linked

the expression level of genes in the kernel at 15 DAP (Fu

et al., 2013) with the levels of the identified metabolites in

the same tissue using our newly developed linear model,

named quantitative genome-wide association study

(qGWAS) (Wen et al., 2016b).

To add to the information gathered through GWAS,

qGWAS and bioinformatics, we conducted transgenic and

candidate gene resequencing approaches to determine the

genetic components and variations of the metabolites from

the aspartate, aromatic amino acid and trehalose path-

ways. Nine amino acids (i.e. lysine, methionine, threonine,

phenylalanine, tryptophan, valine, isoleucine, leucine and

histidine) that are not synthesized by humans and other

animals are classified as essential (Galili and Amir, 2013).

Fortunately, human and other animals can absorb these

amino acids by eating crops because plants can synthesize

them. In the present work, we paid attention to the maize

aspartate and shikimate pathways and corroborated the

function of the associated genes within maize amino acid

metabolism. The aspartate family pathway in plants leads

to the biosynthesis of lysine, methionine, threonine and

isoleucine (Jander and Joshi, 2009). Aspartate kinase (AK)

commits the first catalytic step of this pathway and is

adjusted in the negative feedback-loop by several end-pro-

ducts, such as lysine and threonine (Galili, 1995). Lysine is

an important essential amino acid nutritionally; its biosyn-

thesis from aspartate-4-semialdehyde is a six-step pathway

that is strongly influenced by the rate of its synthesis in

plants (Stepansky et al., 2006). Lysine levels in plants are

also influenced by its catabolism, whereby lysine is

degraded into glutamate and acetyl Co-A. The first two

enzymes of lysine catabolism are synthesized from a single

lkr/sdh gene. Lysine is converted to saccharopine by

lysine-ketoglutarate reductase (LKR) through condensation

with alpha-ketoglutarate (2OG) and subsequently to gluta-

mate and alpha-aminoadipate-delta-semialdehyde by sac-

charopine dehydrogenase (SDH) (Reyes et al., 2009). The

well-tuned lysine metabolism suggests that lysine may

serve as a signaling molecule affecting plant growth and

interaction with the environment (Galili, 2002; Stepansky

et al., 2006). Glutamate, the product of lysine degradation,

is decarboxylased by glutamate decarboxylase (GAD) to

c-amino butyric acid (GABA), which is a four-carbon non-

protein amino acid present in all organisms (Baum et al.,

1996). In humans depression and insomnia are often

caused by a large decrease in GABA content as it acts as

an inhibitory neurotransmitter (Hall et al., 2011; Bachtiar

et al., 2015). In plants, GABA homeostasis is important for

plant growth (Takayama and Ezura, 2015). Aromatic amino

acids (tryptophan, phenylalanine and tyrosine), which are

derived from the shikimate pathway, serve as precursors

of a wide range of secondary metabolites (Maeda and

Dudareva, 2012). Chorismate, the final product of the shiki-

mate pathway, is converted to prephenate. The conversion

of prephenate to phenylalanine and tyrosine may occur via

two alternative routes, i.e. the arogenate pathway and the

phenylpyruvateor 4-hydroxyphenylpyruvate pathway

(Maeda and Dudareva, 2012). In the former pathway,

prephenate is first transaminated to arogenate, which is

subsequently converted to phenylalanine by arogenate

dehydratase (ADT) or to tyrosine by arogenate dehydroge-

nase (ADH), respectively. In the latter pathway, prephenate

is first catalyzed by prephenate dehydratase (PDT) to

phenylpyruvate or catalyzed by prephenate dehydrogenase

(PDH) to 4-hydroxyphenylpyruvate, followed by transami-

nation of the corresponding products, to phenylalanine or

tyrosine, respectively. In plants the arogenate pathway was

indicated as the predominant route to phenylalanine

biosynthesis (Maeda et al., 2010). A recent study
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suggested that alternative tyrosine biosynthesis pathways

with distinct routes and localization have evolved in differ-

ent plants, although their physiological functions remain

unknown (Schenck et al., 2017). Trehalose is an alpha,

alpha-1,1-linked non-reducing disaccharide (Schluepmann

and Paul, 2009). In plants, the trehalose pathway has long

been associated with abiotic stress, including drought and

excess salt (Henry et al., 2015). Trehalose is derived from

UDP-glucose to glucose-6-phosphate and catalyzed by the

enzyme trehalose-6-phosphate synthase (TPS). After that,

the intermediate trehalose-6-phosphate (T6P) is dephos-

phorylated into trehalose by the enzyme trehalose-6-phos-

phate phosphatase (TPP). Subsequently the enzyme

trehalase is responsible for the degradation of this metabo-

lite (Zhou et al., 2013). Although some major enzymes in

the above-mentioned pathways have been biochemically

characterized and the corresponding genes identified in

plants, only a handful of genes involved in these pathways

were identified by population genetics approaches and

limited genetic studies have been performed with plant

enzymes. As an increased number of studies have detected

considerable loci associated with metabolites in these

pathways in plants (Sauvage et al., 2014; Wen et al., 2015;

Deng et al., 2017), a large number of responsible genes

within these loci and the expression pattern, the subcellu-

lar localizations as well as the naturally occurring variation

of these genes need to be explored.

A number of significant loci or candidate genes affecting

the abundance of primary metabolites in this study have

been revealed by GWAS. Moreover, a combination of

GWAS, qGWAS, bioinformatics and the analysis of valida-

tory transgenic lines enabled us to dissect the key genetic

components of maize primary metabolism, thereby facili-

tating maize improvement.

RESULTS

Metabolic loci identified by GWAS

In total, 61 primary metabolites were identified and quantified

across four tissues in amaize association panel (54 in seedling

leaf, 52 in leaf at reproductive stage, 47 in young kernel, 55 in

mature kernel), 38 of which were measured in all four tissues

(Data S1 in the online Supporting Information). All of these

metabolites are of known chemical structure and could be

assigned to one of the following compound classes: sugars,

sugar alcohols, organic acids or amino acids. Detailed infor-

mation about these metabolites is provided in Data S1. Levels

of these 38 metabolites were significantly different across the

four types of tissue (Data S1).

A total of 153 significant loci associated with metabolite

levels across all four tissues (P ≤ 2.04 9 10�6; Figure S1,

Data S2) were detected by GWAS. The metabolic variance

explained by each locus ranged from 5.0% to 25.2%, with a

mean of 7.8%. Only a handful of these 153 loci are known

or well characterized. For instance, opaque-2 (O2), which

encodes a basic leucine zipper protein transcription factor

(Schmidt et al., 1992; Deng et al., 2017), was significantly

associated with the level of amino acids leucine, ornithine,

phenylalanine, glycine, tyrosine, valine and histidine in the

mature kernel in this study (Table 1, Data S2).

Prioritizing candidate genes for primary metabolite

variation based on multiple lines of evidence

Prioritizing and refining the signals identified by GWAS and

qGWAS is essential for identifying the functional genetic

variants and revealing the biological processes underlying

the natural variation of maize primary metabolism. Thus,

for each of the 153 loci detected here we evaluated the link

between functional annotation of all the genes at the locus

and the corresponding metabolite to pinpoint the most

plausible causal gene. Besides obvious candidates directly

involved in the respective pathway, GWAS may identify

additional unexpected loci. Therefore, for each of these 153

loci, the candidate genes were identified within a 100-kb

window of the lead SNP and are listed in Data S3. If there

was no obvious candidate gene, the one nearest to the peak

SNP was chosen. Two candidate genes within these 153

significant loci were revealed by qGWAS and 32 exhibited

cis expression QTLs (Liu et al., 2017) together with signifi-

cant (P ≤ 0.05) correlation between gene expression and

metabolite level (Data S3).

For qGWAS, we analyzed associations between the

expression levels of 28 769 genes (Fu et al., 2013) and the

content of 47 metabolites in maize kernels at 15 DAP. Links

between 18 metabolites and 760 genes were found by using

the REG model (false discovery rate ≤ 0.05). The number of

genes whose expression levels significantly relate to the

metabolite level ranged from one for glucose to 265 for gly-

cine; and the metabolic variance that the expression of each

gene could explain ranged from 3.3% to 12.7%, with a mean

of 4.4% (Data S4). There are 15 genes whose expression

level was significantly associated with the level of more

than two metabolites, including the well-characterized

bifunctional enzyme LKR/SDH (Data S4). Significant associ-

ations between the level of lkr/sdh expression and five

metabolites (i.e. glutamine, methionine, isocitric acid, thre-

onine and valine) were revealed (Data S4).

Promising candidate genes are listed in Table 1. All of

these genes were supported by multiple lines of evidence,

i.e. linkage mapping according to our previous study on

primary metabolites (Wen et al., 2015), expression quanti-

tative trait locus (eQTL) analysis, qGWAS or functional

annotation that matched with the corresponding metabo-

lite. Although some genes such as O2 and lkr/sdh have

been identified previously (Mertz et al., 1964; Kemper

et al., 1999), the significant associations between them and

multiple metabolites provide us with a more comprehen-

sive picture of their role in metabolic regulation.
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In most cases, the protein or enzyme encoded by the

listed candidate gene directly catalyzes the production of

the corresponding metabolite; for instance, glutamate

decarboxylase catalyzes the production of GABA in mature

leaf, succinate dehydrogenase catalyzes the production of

succinic acid in the mature kernel, trehalase 1 catalyzes the

production of trehalose in the young kernel and finally tyr-

osine/DOPA decarboxylase catalyzes the formation of tyra-

mine and dopamine in the seedling and mature leaf.

Gene discovery and validation in the amino acid and

trehalose metabolic network

The lkrts (GRMZM5G801369) locus is annotated as lysine

ketoglutarate reductase trans-splicing related 1. This locus

is significantly associated with the ratio between GABA

and 2OG (GABA/2OG, P = 5.68 9 10�7), which are critical

components involved in lysine catabolism (Figure 1a, b).

Overexpression of lkrts in maize resulted in a significantly

increased level of both lysine (P = .0031 in L7342,

P = 0.0128 in L7298) and the GABA/2OG ratio (P = .0089 in

L7298) in leaf tissue, which strongly suggests the involve-

ment of lkrts in the pathway (Figure 1c–e). Moreover, a few

other aspartate-derived amino acids are also highly influ-

enced in the over-expression lines; for instance, threonine

and GABA are upregulated whereas glutamate is downreg-

ulated (P < .05; Figure S2 and Figure S3). We also

observed a high positive correlation between the expres-

sion level of Zmlkrts and the lysine content in over-

Table 1 Summary of selected significant loci

Chr Candidate gene Metabolite Tissuea Annotation Evidence

1 GRMZM2G124353* Alanine_beta l Alanine:glyoxylate aminotransferase GWAS, linkage mapping
1 GRMZM2G056469 Dopamine, tyramine s, l Tyrosine/DOPA decarboxylase GWAS, linkage mapping
1 GRMZM2G093125* Dopamine, tyramine s, l Tyrosine/DOPA decarboxylase GWAS, linkage mapping
1 GRMZM2G017110* GABA l Glutamate decarboxylase GWAS
1 GRMZM5G826838* GABA s Glutamate decarboxylase GWAS
1 GRMZM5G825854 Galactinol k Sec34-like family protein GWAS, eQTL
1 GRMZM2G131575 Glutaric_acid_2_oxo s H(+)-transporting two-sector ATPase GWAS
1 GRMZM2G306732* Inositol_myo k Fructose-1,6-bisphosphatase GWAS
1 GRMZM2G050851* Leucine k Regulation of transcription, DNA-dependent GWAS, eQTL
1 GRMZM2G046101 Sucrose l Glucan endo-1,3-beta-glucosidase GWAS
1 GRMZM2G077181* Sucrose s Galactinol–sucrose galactosyltransferase GWAS
1 GRMZM2G162690 Trehalose k Trehalase 1 GWAS, eQTL
2 GRMZM2G076204* Glutamic_acid k Gamma-soluble NSF attachment protein GWAS, eQTL
2 GRMZM2G004590* Quinic_acid k, m Shikimate kinase GWAS
3 GRMZM2G466833 Caffeic_acid_trans s Malate dehydrogenase GWAS
3 GRMZM2G082780 Galactinol m Phosphoenolpyruvate carboxylase GWAS
3 GRMZM2G054663* Glyceric_acid k D-glycerate 3-kinase GWAS, eQTL
3 GRMZM2G152127 Glyceric_acid k Long-chain-fatty-acid: CoA ligase GWAS, eQTL
3 GRMZM2G029219* Pyruvic_acid k Carbohydrate transporter GWAS, eQTL
4 GRMZM2G181362 Gln; Met; isocitric

acid; Thr; Val
k Lysine-ketoglutarate reductase/saccharopine

dehydrogenase
qGWAS

5 GRMZM2G121460* Citric_acid k Inosine-50-monophosphate dehydrogenase GWAS, eQTL
5 GRMZM2G075265 Glucose m ALG6, ALG8 glycosyltransferase family GWAS
5 GRMZM2G110881 Rhamnose k, m UDP-glucose 4-epimerase GWAS
5 GRMZM2G410865 Rhamnose k, m UDP-glucose 4-epimerase GWAS
5 GRMZM2G076524* Succinic_acid m Succinate dehydrogenase GWAS
5 AC210013.4_FG017 Sucrose l Polygalacturonase GWAS
6 GRMZM2G124671 Glycerol_3_phosphate m Glycosyltransferase family protein GWAS
6 GRMZM2G027723 Phenylalanine s CesA-2 GWAS
6 GRMZM2G442804 Serine l S-adenosylmethionine-dependent

methyltransferase
GWAS

7 GRMZM2G015534 Leu; Val; Orn; His;
Tyr; Phe; Gly

m Regulatory protein opaque-2 GWAS

7 GRMZM2G121546* Phenylalanine k Arogenate dehydratase GWAS, qGWAS
7 GRMZM2G342895* Phenylalanine k Arogenate dehydratase GWAS, qGWAS
7 GRMZM2G113056 Proline k Shikimate kinase GWAS
8 GRMZM2G119345 GABA k ABC-2 type transporter family protein GWAS, eQTL
8 GRMZM2G066024 Sucrose l Fructose-bisphosphatealdolase

cytoplasmic isozyme
GWAS

10 GRMZM2G400999* Xylose l Xylanase inhibitor protein 1 GWAS

Genes with an asterisk (*) locate closest to the lead SNP.
aKey: ‘s’ represents seedling leaf, ‘l’ represents mature leaf, ‘k’ represents young kernel, ‘m’ represents mature kernel.
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expression lines of rice (r = .71, P = .0097; Figure 1f). Taken

together, we thus propose that Zmlkrts plays a key role in

the regulation of aspartate levels via its role in the lysine

catabolic pathway.

The level of GABA in mature maize leaves was mapped

to a putative glutamate decarboxylase (ZmGAD1;

GRMZM2G017110) by GWAS (Figure 2a, b). Overexpres-

sion of ZmGAD1 in rice led to the accumulation of GABA

and reduction of glutamate in the leaf tissue (Figure 2c–e).
The regulatory influence of ZmGAD1 on GABA and gluta-

mate level in rice leaf strongly supports its functional

annotation as ‘glutamate decarboxylase’. In addition, a

negative correlation between glutamate content and the

expression level of ZmGAD1 (r = –.19, n = 213, P = .0066)

in the mature leaves was found in our maize association

panel.

A locus (ZmADT) was identified on chromosome 7 that

is strongly associated with the level of phenylalanine in

the young kernel (kernel at 15 DAP) (Figure 3a). Arogenate

dehydratase catalyzes the last step of this pathway linking

arogenate to phenylalanine (Figure 3c) (Holding et al.,

2010). Two tandem genes (GRMZM2G342895 and

GRMZM2G121546) both annotated as arogenate dehy-

dratase (ADT; B73 RefGen v2) co-locate with this locus (Fig-

ure 3b). In addition, significant association between the

level of phenylalanine in the young kernel and both

GRMZM2G342895 and GRMZM2G121546 was identified by

qGWAS and Pearson correlation analysis (Figure 3f). By

resequencing this locus we found a polymorphism (811-bp

insertion–deletion, InDel 811) at the 50 untranslated region

(UTR) of GRMZM2G342895, and the allele frequency of the

811-bp insertion is 46% (Figure 3d). The 811-bp insertion

Figure 1. Verification of Zmlkrts (lysine ketoglutarate reductase trans-splicing related 1) (GRMZM5G801369) as a candidate gene involved in the aspartate-

derived amino acid pathway in maize mature leaf.

(a) Manhattan plot displaying the result of the genome-wide association study for the ratio between GABA and alpha-ketoglutarate (2OG) (GABA/2OG) in the

mature leaf. The red arrow points to gene GRMZM2G801369.

(b) Proposed aspartate metabolic pathway in maize. AK, aspartate kinase; HSD, homoserine dehydrogenase; DHDPS, dihydrodipicolinate synthase; DHDPR,

dihydrodipicolinate reductase; LKR, lysine ketoglutarate reductase; SDH, saccharopine dehydrogenase; GAD, glutamate decarboxylase. The solid arrows indicate

exact enzymatic steps and the yellow dotted arrows indicate reactions with more than one step.

(c) Relative expression level of GRMZM2G801369 in the leaves of over-expression maize lines (T1). Values represent mean � SEM (n ≥ 6 plants). *P < .05.

(d) The level of GABA/2OG between the wild-type individuals (WT) and the over-expression individuals (OE) in two transgenic lines (L7342 and L7298). Values

represent mean � SEM (n ≥ 6 plants). *P < .05.

(e) Relative intensity of lysine between WT and OE individuals in two transgenic lines (L7342 and L7298). Values represent mean � SEM (n ≥ 6 plants). *P < .05.

(f) Correlation between the expression level of GRMZM5G801369 and lysine content in leaves of over-expression rice lines (T0).
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strongly decreases the expression of GRMZM2G342895

(P = 1.08 9 10�7; Figure 3e) and the phenylalanine content

in the young kernel (P = 5.1 9 10�4; Figure 3e), which may

represent one of the key functional genetic variants for the

ZmADT locus.

In this study, a locus (Tre1) on chromosome 1 was sig-

nificantly associated with the level of trehalose in the

maize young kernels (Figure 4a, c; P = 1.95 9 10�7, mix

linear model (MLM)). Three SNPs which are in a linkage

disequilibrium (LD) block were identified above the thresh-

old (P ≤ 2.04 9 10�6, MLM). One of these three SNPs was

located in the third exon of Tre1, resulting in an amino acid

replacement (from serine to glycine; Figure 4b). A cis-eQTL

was identified for the expression level of ZmTre1 (Fig-

ure 4d) and negative correlation (r = –.25, P = 8.07 9 10�4

by Pearson correlation analysis) was observed between

the Tre1 expression level and the level of trehalose in the

young kernel (Figure 4e). We therefore resequenced the

promoter region of Tre1 and found three insertion–deletion
(InDel) polymorphisms, which are located within 500 bp

(Figure 4b). The trehalose levels in the inbred lines with

insertion (with any one of the three insertions or any two

or all three insertions) in the upstream of ZmTre1 are sig-

nificantly (P = 1.4 9 10�5) higher than those with no

insertions (Figure 4f). Also, ZmTre1 expression is higher in

lines with insertion than lines without (t-test,

P = 6.9 9 10�13) (Figure 4f). In addition, we conducted hap-

lotype analysis by combining InDel 1_1 with the three sig-

nificant SNPs, respectively. Significant differences between

distinct haplotypes were found when InDel 1_1 was com-

bined with SNP chr1.S_79999858 (Figure 4g). We thus

speculate that the three InDels, SNP chr1.S_79999858 and

its combinations, are all responsible for the trehalose level

in the young kernel.

DISCUSSION

Understanding the genetic control of primary metabolism

in maize, the crop with the largest production worldwide,

is essential for worldwide food security and sustainable

agriculture. Comprehensive studies on the natural genetic

variation of maize primary metabolism are scarce despite

exhaustive studies that focus on only one or a few meta-

bolic traits in maize (Zhang et al., 2015; Deng et al., 2017).

This study measured primary metabolites in multiple tis-

sues of maize and demonstrated that there were few loci

with a large effect (with R2 > 15%); however, for the varia-

tion of primary metabolites loci with a minor to modest

genetic contribution are common. Each locus contributes a

Figure 2. Verification of ZmGAD1 (GRMZM2G017110) as a candidate gene responsible for the level of GABA in mature maize leaf.

(a) Manhattan plot displaying the result of the genome-wide association study for GABA content in the maize mature leaf. The dashed line indicates the thresh-

old of P ≤ 2.04 9 10�6. The lower panel shows the regional association between single nucleotide polymorphisms (SNPs) and GABA level (100 kb upstream and

downstream of the most significant SNP) and the relative position of the peak SNP and the corresponding gene.

(b) The reaction from glutamate to GABA catalyzed by glutamate decarboxylase (GAD).

(c) Expression profiling of ZmGAD1 in the leaves of rice transgenic lines L1, L3 and L4 (T1). Values represent mean � SEM (n ≥ 6 plants). *P < .05.

(d) Relative intensity of GABA in wild-type individuals (WT) and over-expression individuals (OE) of transgenic lines L1, L3 and L4. Values represent mean �
SEM (n ≥ 6 plants). *P < .05.

(e) Relative intensity of glutamate in WT and OE individuals of transgenic lines L1, L3 and L4. Values represent mean � SEM (n ≥ 6 plants).
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modest effect on average (R2 = 7.8%). Genome-wide asso-

ciation of carbon and nitrogen metabolism in the maize

nested association mapping population was revealed by

Zhang et al. (2015), who identified the genetic basis of nat-

ural variation controlling the levels of 12 key C and N

metabolites. It was also indicated that most QTLs of the

variation of C and N metabolites have modest effects.

Although the contribution of individual primary metabolic

QTLs to the total phenotypic variance (PVE) usually has a

wide range, for example the PVE of each QTL identified in

an Arabidopsis RIL population ranged from 1.7% to more

than 52.1% (Lisec et al., 2008) and the PVE of each QTL

identified in a maize RIL population ranged from 2.4% to

49.0% (Wen et al., 2015), the average contribution of indi-

vidual primary metabolic QTLs is generally modest (Lisec

et al., 2008; Sauvage et al., 2014; Wen et al., 2015). The rel-

ative low level of primary metabolic variation explained by

each locus can be due to genes and metabolites being

embedded in a complex regulatory network of primary

metabolism. Although a complex genetic basis underlying

the variation of primary metabolite levels has been

revealed by previous studies and in this study (Sauvage

et al., 2014; Alseekh et al., 2015; Wen et al., 2015; Zhang

et al., 2015), GWAS and qGWAS could efficiently fine-map

the potential causative loci, and in some cases help

identify the casual genes. Consistent with previous studies

the majority of loci identified by GWAS here were tissue-

specific, which implies the presence of distinct genetic and

biochemical regulation of the pathways concerned (Wen

et al., 2015). Since different tissues use only a subset of

the capabilities encoded by the maize genome and spatio-

temporal differences in the expression patterns of genes

also lead to metabolic diversity among different tissues,

dissecting metabolites in multiple tissues provided more

comprehensive information than that found in a single tis-

sue. The identification of hundreds of loci in the present

multiple-tissue primary metabolite GWAS enables candi-

date gene identification, will aid further analysis of the

molecular basis of variation of maize primary metabolites

and provides a foundation on which to design breeding

strategies for metabolic engineering. The generally low

level of explained phenotypic variation estimated here

implies that significant improvement may require the pyra-

miding of several loci.

By integrating gene expression information we can

make the connection between the metabolite concentration

and gene expression within the same tissue and predict

the most likely genes and genetic variants responsible for

primary metabolic pathways, as well as indicate potential

targets for transgenic manipulation. The observed genetic

Figure 3. Resequencing and candidate gene association analysis of ZmADT as a candidate gene affecting phenylalanine content in young maize kernels.

(a) Manhattan plot displaying the result of the genome-wide association study for phenylalanine level in the young maize kernel.

(b) Regional association between single nucleotide polymorphisms (SNPs) and phenylalanine level (100 kb upstream and downstream of the most significant

SNP and genes annotated in this region). Genes are represented by arrows and the red arrows indicate two genes at the locus ZmADT.

(c) Proposed shikimate metabolic pathway in maize. CM, chorismate mutase; PPA-AT, prephenate amino transferase; ADH, arogenate dehydrogenase; ADT,

arogenate dehydratase.

(d) Structure of the two ZmADT genes. The green boxes indicate the ADT domain. The position of the 811 insertion is indicated by the yellow triangle.

(e) Box plot showing differences in phenylalanine content and expression level of two ZmADT genes between the two genotypes at the site InDel 811.

(f) Plot of Pearson correlation between the content of phenylalanine and the normalized expression level of the two ZmADT genes.
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variation at a locus is usually supported by cis-eQTL of the

target gene and significant correlation between gene

expression and metabolite levels (Wen et al., 2014). The

causal variants can have regulatory consequences which

influence the metabolite level through transcriptional regu-

lation. A priori knowledge of the structural and regulatory

genes participating in plant primary metabolism helped us

select potential candidates in this study. For instance,

ZmGAD1 and ZmADT, which we validated here, putatively

encode enzymes that catalyze the production of the target

metabolites used in GWAS. However, genes of unknown

function that were found by using expression data are also

candidates for further investigation. Although qGWAS did

find well-characterized functional genes and there is over-

lap between the GWAS and qGWAS result in this study, not

many genes were cross-validated using these two

approaches. This may be due to following reasons. First,

the influences on the metabolite level from the genetic vari-

ants and from the transcriptional variants can be indepen-

dent. Second, environmental factors may result in

disagreement since the expression and the metabolite data

were collected in samples grown in different environments.

Free amino acids serve as essential building blocks for

proteins and are important for the biosynthesis of numer-

ous essential compounds and responses to environmental

changes during normal plant growth and development

(Tzin and Galili, 2010; Angelovici et al., 2011). Although

maize is the highest-yielding crop worldwide, deficiency in

the essential amino acids (i.e. lysine and tryptophan) in its

main storage proteins, the zeins, prevents it from being the

sole protein source for humans and livestock. The discov-

ery of the O2 mutation was of considerable importance for

improvement of maize protein quality by enhancing the

lysine and tryptophan levels while decreasing the synthesis

of zeins, and in compensation increasing other (non-zein)

seed proteins (Liu et al., 2017). The significant association

between the O2 locus and multiple amino acid levels identi-

fied by GWAS here implies an opportunity for mining natu-

rally occurring genetic variants for maize quality

improvement or manipulation of primary metabolism. In

Figure 4. Resequencing and candidate gene association analysis of ZmTre1 as a candidate gene affecting trehalose content in maize young kernel.

(a) Manhattan plot displaying the result of the genome-wide association study for trehalose in maize young kernel (upper), and the regional association plot for

locus ZmTre1 (lower). Red dots indicate the single nucleotide polymorphisms (SNPs) above the threshold.

(b) Structure and genetic variations of the candidate gene, ZmTre1. The black arrows point to the relative positions of the three significant SNPs in (a), with blue

words denoting the alleles and amino acid replacements. The B73 allele on reverse strand is before the vertical line. The aquamarine triangles indicate InDel 1_1

with three different fragments inserted into the promoter region marked by the dashed black box. Below the gene structure is the linkage disequilibrium plot

showing the pair-wise r2 value among all polymorphic sites in ZmTre1 and the asterisks on it indicate the three significant SNPs which are connected to the

three black arrows in the gene.

(c) Proposed trehalose metabolic pathway in maize. HXK, hexokinase; TPS, trehalose-6-phosphate synthase; TPP, trehalose-6-phosphate phosphatase; TRE, tre-

halase; Glucose-6-P, glucose-6-phosphate; UDP, uridine-5-diphosphate; Pi, phosphate.

(d) Manhattan plot of eQTL analysis of ZmTre1 expression. The red arrow indicates the cis-expression quantitative trait locus (cis-eQTL) signal of ZmTre1.

(e) Plot of Pearson correlation between the content of trehalose and the normalized expression level of the ZmTre1 gene. Maize inbred lines with different geno-

types at the InDel 1_1 site are shown in orange and midnight blue, respectively.

(f) Box plot for trehalose content and ZmTre1 expression level between different genotypes of InDel 1_1.

(g) Box plot showing the difference in trehalose content between different haplotypes.
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addition, the importance of a known locus in the lysine

catabolic pathway (lkr/sdh) was indicated in this study, pro-

viding a proof-of-concept for our approach. However, the

identification of lkr/sdh is of greater significance than this

alone. While transgenics in which lkr/sdh was repressed in

combination with upregulated AK (aspartate kinase) and

dhdps (dihydrodipicolinate synthase) expression were doc-

umented to have considerably higher lysine levels; they

also exhibited aberrant germination in Arabidopsis and

soybean and have a large impact on the physicochemical

characteristics of grain flours in rice (Galili and Amir, 2013;

Yang et al., 2016). Our results suggest that the use of abso-

lute metabolite levels as target traits that can reveal gene

and metabolite association is an efficient method with con-

siderable power. Moreover, using a population-based

approach allows immediate screening for yield penalties

or other physiological disadvantages. However, when

dynamic and unknown connections between the compo-

nents exist in a metabolic network, the sum or the ratio of

the related traits can also serve as a derived trait for

genetic mapping (Angelovici et al., 2013, 2017).

Herein we used the ratio between two components of

lysine catabolism as a trait (GABA/2OG) and found locus

Zmlkrts1. Threegenes (AC234165.1_FG002,GRMZM5G801369

and AC234165.1_FG003) are located at this locus, and the

former two are annotated as lipoprotein and lysine ketog-

lutarate reductase trans-splicing related, respectively.

Functional annotation of AC234165.1_FG003 is unknown.

We thus consider the putative function of Zmlkrts1 as

related to lysine ketoglutarate reductase trans-splicing.

Our current validation through overexpression of Zmlkrts1

in maize strongly supports its regulatory influence within

the pathway. A recent study integrating omics networks

in a developmental atlas of maize revealed that Zmlkrts1

is related to RNA metabolism (Walley et al., 2016). How-

ever, more work is required to resolve the molecular and

biochemical influence of this locus on the lysine catabolic

pathway and to understand the exact molecular mecha-

nism. The proteogenomics approach may represent a

route to achieve this, given that it readily provides infor-

mation on the frequency of translation of the different

splice variants (Zhu et al., 2017). Whilst particularly perti-

nent in this instance it may also uncover alternative splic-

ing at other QTLs.

At the locus ZmGAD1, associated here with the level of

GABA in mature maize leaves, a candidate gene putatively

encoding a glutamate decarboxylase is of higher priority

for selection. In plants GABA is not only a metabolite but

also a signaling molecule, and is involved in a variety of

physiological processes such as pollen tube growth (Yu

et al., 2014), regulation of intracellular Ca2+ levels (Fait

et al., 2008) and ethylene production (Shi et al., 2010;

Takayama et al., 2017). The maize genome encodes five

putative glutamate decarboxylase (GAD) genes and their

expression pattern greatly varies (Sekhon et al., 2011). One

of them is specifically expressed in the anther, and two

others, whilst being expressed in multiple tissues, have a

dramatically higher expression level in the primary root

and silk, respectively. ZmGAD1 identified here has a higher

expression level in mature leaves and internodes than that

in other tissues (Sekhon et al., 2011).

Potential genetic changes within Zmlkrts1 and ZmGAD1

were detected by resequencing their 50 and 30 UTRs and

part of the coding regions (Figures S4 and Figure S5). For

lkrts, a 165-bp insertion in the 50 UTR, which is a DNA

transposon named hobo-activator based on database via

RepeatMasker, was found in only six lines and might be

functional (Figure S4b, c). However, it is not reasonable to

judge the significance of this insertion and phenotypic vari-

ance due to the low allelic frequency (Figure S4d). For

GAD1, the 30 UTRs of 443 varieties were sequenced and a

71-bp insertion in the last intron of ZmGAD (ZmGAD_T03)

was detected in eight lines (Figure S5a–c). It may affect the

abundance of different transcripts of ZmGAD based on our

RNA sequencing (RNA-seq) data; however, it is not reason-

able to judge the significance of this insertion and pheno-

typic variance due to the low allelic frequency (Figure S5d).

One of the promising genes identified, ZmADT

(GRMZM2G342985; B73 RefGen v2) annotated to encode

ADT, co-locates with a locus significantly associated with

the level of phenylalanine in the young kernel (Table 1).

The expression level of ZmADT is also highly linked to the

level of phenylalanine, as indicated by qGWAS. The

enzyme ADT participates in phenylalanine biosynthesis by

catalyzing the conversion of arogenate into phenylalanine,

H2O and CO2. Aromatic amino acid biosynthesis provides

basic building modules for proteins and diverse metabo-

lites in plants (Maeda and Dudareva, 2012), and hence this

information will be important for the breeding of nutrition-

ally improved crops.

Trehalose and its precursor T6P have been found to pos-

sess a variety of different functions, including storage of

chemical energy and biotic and abiotic stress tolerance

(Henry et al., 2014; Bledsoe et al., 2017). Recently, Nuccio

et al. (2015) pointed out that engineering of trehalose

metabolism may provide a good target for future crop

improvement. The significant role of the trehalose pathway

can be revealed by dramatic phenotypes of plants with

altered expression of trehalose pathway genes, which

include effects on diverse agronomically important traits

(Lunn et al., 2014). However, the detailed picture of the

function of the trehalose pathway and genes involved in

this pathway in a C4 cereal crop such as maize remain

unclear. In total, 14 trehalose-6-phosphate synthase (TPS)

genes, 11 trehalose-6-phosphate phosphatase (TPP) genes

and one trehalase (TRE) gene have been identified in the

maize genome (Henry et al., 2014). Herein, through GWAS,

candidate gene resequencing and association analysis, we
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have identified the TRE gene and speculated on the genetic

and regulatory underpinnings of the naturally occurring

variation of the trehalose level in the maize kernel at 15

DAP. Although a more detailed characterization of ZmTre1

is necessary for further understanding whether or how it

plays a role in sugar and starch metabolism, plant growth

and/or stress tolerance, the association panel used here

offers us a fascinating system for investigating the natu-

rally occurring variation of the trehalose pathway. In addi-

tion, it is worth dissecting genetic variants of the maize

family of TPS and TPP genes using this available associa-

tion panel and assessing contributions of these genes to

the maize metabolism and plant performance in the con-

text of natural variation.

In summary, genetic variation within our association

panel represents a rich resource for maize improvement.

The combination of a GWAS with metabolomic, transcrip-

tomic and transgenic approaches enables dissection of

complex quantitative traits into their structural and regula-

tory genetic components, which provides an effective

approach for the metabolic engineering of nutritional traits

and facilitates the use of existing genetic variations by

marker-assisted breeding.

EXPERIMENTAL PROCEDURES

Plant materials

In this study samples for metabolite profiling were taken in an
association panel containing 513 diverse inbred lines (Yang et al.,
2010; Wen et al., 2015). This panel was planted in Wuhan (114°210

E, 30°280 N) in spring 2013 and Sanya (109°510 E, 18°250 N) in winter
2013. For each line planted at the field station in Wuhan, we took
samples from three different stages, that is, leaf at seedling stage,
leaf at reproductive stage and kernels at 15 DAP. The two leaf
stages belong to stage code 17 and code 61 (http://research.omics
group.org/index.php/BBCH-scale_(maize)), respectively. At the field
station in Sanya we took samples of mature kernels of each line.

For leaf samples, leaves of three plants from the same line were
collected and bulked as one. For kernel samples, kernels from
three ears from the same line were collected and bulked as one.
Normally we expected to have around 510 samples; however, for
some genotypes we failed to harvest three cobs/ears (e.g. some
ears contain fewer than 15 well-pollinated kernels). To reduce bias
we did not use the data from these genotypes. In total, 1256 sam-
ples were collected in Wuhan (468 samples from leaf at seedling
stage, 493 samples from leaf at reproductive stage, and 295 sam-
ples from 15-DAP kernel) and 490 samples were collected in Sanya
(mature kernel). All samples were collected and stored at –80°C
before metabolite extraction.

Genotypic and transcriptomic data

Previously, the panel was genotyped using multiple platforms (i.e.
RNA-seq, Genotyping-by-sequencing, SNP array) and genotypes
at 2.65 million loci were obtained (Liu et al., 2017). In this study
we used 1.25 million out of the 2.65 million loci which had a Minor
Allele Frequency (MAF) ≥ 5%. The RNA-seq data covering 28 679
genes from 15-DAP seeds of 368 lines of the panel are publicly
available (Fu et al., 2013).

Metabolite profiling based on gas chromatography time-

of-flight mass spectrometry (GC-TOF-MS)

A protocol adapted from previous studies (Roessner et al., 2001;
Lisec et al., 2006) was adopted for metabolite extraction. Briefly,
50 mg of fresh powder of each sample was used for follow-up
extraction, as described in detail in our previous publication (Wen
et al., 2015). The dried extracted samples were shipped to the
Max-Planck Institute of Molecular Plant Physiology (Potsdam, Ger-
many) for metabolite profiling. After derivatization, 1 ll of each
sample was injected into a GC-TOF-MS system [Pegasus III (Leco,
https://www.leco.com/) for samples collected in Wuhan and Pega-
sus IV (Leco) for mature kernel samples collected in Sanya]. Gas
chromatography was performed and mass spectra were evaluated
(Kopka et al., 2005; Wen et al., 2015). The details of each identified
metabolite as well as the raw phenotypic data for all lines are pro-
vided in Data S5.

Genome-wide association analysis for metabolites

detected across four types of tissue

The association between the genome-wide SNPs (about 1.25 mil-
lion SNPs with MAF ≥ 5%) and each metabolic trait detected from
different tissue types (including metabolite concentration and
selected metabolite/metabolite ratios) was tested. We used a
mixed linear model accounting for the population structure (Q) and
familial relationship (K) implemented in TASSEL3.0 software
(Zhang et al., 2010). The effective number of independent markers
(N) was calculated using the GEC software tool (Li et al., 2012), and
a suggestive P-value threshold (1/N) was set to control the gen-
ome-wide Type I error rate. The P-value threshold was 2.04 9 10�6

for the entire population. The following steps were used to identify
significant loci. First, all significantly associated SNPs were
grouped into clusters where the distance between two consecutive
SNPs was < 20 kb and the clusters with at least two significant
SNPs were regarded as candidate loci. Next, those candidate loci
in LD (r2 ≥ .1) with other more significant candidates for the same
trait were considered as false-positive associations introduced by
intrinsic LD structure and were thus removed. The SNP with the
lowest P-value was selected as the lead SNP of a locus that was
significantly associated with any metabolic trait. The most proba-
ble candidate gene in each locus was selected within 100 kb of the
lead SNP. To identify genomic variants responsible for the expres-
sion level of the candidate genes associated with the metabolic
traits, and to determine whether these significant loci might regu-
late the transcription of other genes, we performed association
analysis as described above using the expression level of each
gene as the phenotype. Results of eQTL analysis of candidate
genes were obtained from our previous study, where genomic
variants responsible for the expression level of each gene detected
by RNA-seq on the 15-DAP kernel of 368 maize inbred lines was
identified (Fu et al., 2013; Liu et al., 2017). The expression level of
28 769 genes was quantified by our previous RNA-seq study on
the 15-DAP kernel of 368 maize inbred lines.

Association of transcriptional and metabolic levels

A statistical method was adopted to link the expression and
metabolite levels detected in the young and mature kernels. A
na€ıve linear regression (i.e. the REG model) was fitted that treated
each metabolite as a response variable and the gene expression
levels as explanatory variables, hereafter referred as ‘qGWAS’
(Wen et al., 2016b). The na€ıve REG model was conducted using
the R/lm package.
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Haplotype analysis

We conducted haplotype analysis by combining InDel 1_1 (0 bp/
insertion) with the SNP (chr1.S_79999858). An ANOVA analysis
was conducted to test the difference between the four groups of
haplotype. The significance threshold is P < .05.

Plasmid construction and maize transformation

The coding sequences of candidate genes were amplified from
B73. After Sanger sequencing to ensure the correct sequence, the
fragment was inserted into the pZZ-EGFP vector by recombination
using a ClonExpress II One Step Cloning Kit (Vazyme, http://en.va
zyme.com/). The pZZ-EGFP vector contains the maize Ubi pro-
moter with an EGFP sequence fused before the Tnos sequence,
which was derived from the maize transformation vector
pZZ01523 provided by China National Seed Group Co., Ltd (http://
www.chinaseeds.com.cn/). Confirmed clones were transferred to
Agrobacterium EHA105 and transformed into maize inbred line
C01. To determine whether the fragment was transferred into the
genome, the marker gene Bar and the expression of the target
gene were examined by PCR and qPCR, respectively. Primers are
listed in Table S1. The T0 transgene-positive plants were back-
crossed to C01 to obtain T1 generation. By planting the T1 individ-
uals from one ear (a segregating line), we identified transgene-
positive individuals (over-expression individuals; OE) and trans-
gene-negative individuals (wild type, WT), which were distin-
guished by Bar-test paper and qPCR analysis on each plant.
Metabolite profiling was done to compare between OE and WT
offspring of each segregating line.

Plasmid construction and rice transformation

The full length-cDNA-fragments of candidate genes were ampli-
fied from B73 and ligated into the vector pCAMBIA1300s. Con-
firmed clones were introduced into Agrobacterium EHA105 by
electroporation and calli induced from mature seeds of an elite
japonica rice cultivar Zhonghua11. The sequences of marker gene
hpt and the target gene were detected by PCR, and expression of
the target gene was detected by qPCR. Primers are listed in
Table S1.

Expression quantification

Total RNA was extracted by TRIZOL (Invitrogen, http://www.invitro
gen.com/) from at least five seedlings of each genotype, according
to the manufacturer’s instructions. First-strand cDNA was synthe-
sized using a TransScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGene Biotek, http://www.transgeneb
iotek.com/) according to the manufacturer’s protocol. Quantitative
PCR was performed on an optical 96-well plate in a Bio-Rad PCR
system (CFX96; http://www.bio-rad.com/) with SYBR Mix
(Vazyme). The relative expression level was calculated using
ZmAct1 (GRMZM2G126010) as an internal control in maize or rice
actin (LOC_Os03 g50885) as a control in rice. The relative quantifi-
cation method was used to calculate the expression level (Livak
and Schmittgen, 2001). The PCR conditions consisted of an initial
denaturation step at 95°C for 3 min, followed by 40 cycles at 95°C
for 10 sec, then 58°C for 30 sec and 72°C for 15 sec.
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